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Description of quantum spin using functions on the sphere Y’* 

J-P Amiet and M B Cibils 
lnstitut de Physique, Universite de NeuchLel, Rue A L Breguet 1, CH-2000 NeuchBtel, 
Switzerland 

Received 4 October 1990 

Abslrsd. An overview of isomorphic correspondences between spin algebra and algebras 
of functions on the sphere is given. In addition, we show that in one case the induced 
product between the spin function and another function is expressible by the action of a 
first-order differential operator correcting the ordinary product. This deformation leads to 
the geometric quantization of classical spin. The classical limit is studied for a class of 
corresoondences. 

1. Introduction 

Wigner functions or Husimi functions [l, 21 originally address to spinless particles or 
systems of particles. The phase-space on which they are defined is an affine symplectic 
manifold characterized by an Abelian transitivity group. To include spin, one possibility 
is to work with matrices which depend on the canonical variables of motion. This 
mixed procedure can be avoided because classical spin makes sense, its sphase-space 
being a sphere [3]. Another homogeneous possiblity is to describe the quantum spin 
states and observables by mean of functions on the sphere. The achievement is 
complicated by the fact that the transitivity group of 9’ is the non-Abelian SO,. 
Correspondences between spin operators and functions on 9’ have been discussed, 
for instance, by Perelomov [4] and more recently by Varilly and Gracia-Bondia [SI. 
The problem of generalizing the Wigner function to discrete spin variables bas been 
considered long before. In particular, continuous extensions of the Moyal formalism 
[6] have been introduced for spin variables by Stratonovich [7] and one can find in 
[8] or [9] other attempts at continuous descriptions of spin. Other kinds of approaches 
have been also considered (see for instance [lo-121 and references therein). For 
additional references and detailed notes on the literature concerning the subject of 
descriptions of classical and quantum spins, we refer to the final section of [5] where 
the authors review precisely the interconnections between several attempts to ‘quantize’ 
the sphere. The approach [5] is analogous to Wigner’s and the other one [4] to Husimi’s 
based on coherent states. In this regard, we refer to the reprint volume [13] for more 
information on the extensive work connected with spin coherent states. 

In this paper we present an overview of the question. We define the most general 
correspondences before selecting special ones owning convenient properties. Neither 
of the two best candidates being perfect, we establish general relations between them. 
Further, geometric quantization and classical limit are discussed in the framework of 
the non-commutative associative algebras of function on Y2 induced by a class of 
correspondences. 

0305-4470/91/07151~+2l~03.50 @ 1991 IOP Publishing Ltd 1515 



1516 J-P Amiet and M B Cibils 

The organization ofthe paper is as follows. In sections 2 and 3 we recall, respectively, 
the structure of classical and quantum spin dynamics. For both of them we introduce 
and compare the essential mathematical tools pointing out the fundamental differences 
between the underlying algebras. 

Section 4 constructs general correspondences between operators in spin Hilhert- 
space and functions on the sphere, called symbols of these operators. It gives semi. 
classical descriptions of quantum spin and general formulas for scalar and Moyal 
products between symbols. We restrict ourself to rotational invariant and real isomorph- 
isms and we fix reasonable descriptions from a basic set of assumptions. 

In section 5 we recall the well-known properties of the Wigner correspondence in 
flat phase space and we ask to what extent is it possible to recover similar properties 
in the spin case. This selects some correspondences (denoted by R, Q and P) which 
are specially convenient and which have complementary properties. In particular, we 
point out that a useful semi-classical description of spin is the approach via spin 
coherent states, given by Q, for which the Moyal product admits a simple differential 
realization. 

The rather technical section 6 gives the basic relations and interconnections between 
the semi-classical descriptions issued from section 5. 

The main results of this paper concerning the differential form of the spin operator 
is developed in section 7 and in an appendix. In analogy with the Wigner correspon- 
dence, we prove that the Moyal product issued from the Q and P representations 
admits a realization by a first order differential operator i acting on symbols of 
ohservables. Furthermore, we also point out that the quantization of the value of the 
spin follows directly from the requirement that i must he Hermitian for a particular 
scalar product. Section 7 ends with some comments concerning a proper physical 
classical limit of spin systems and in section 8 this limit is treated explicitly for a class 
of correspondences. 

Finally, to conclude in section 9, we briefly apply the formalism of section 7 to the 
spin-boson model (see for instance [I41 and references therein). The use of a phase- 
space formulation of spin allows an elegant approach and gives the evolution law of 
the system in a condensed form. 

2. Structure of classical spin dynamics 

Classical spin states are described by vectors SEW' of fixed length S =  m. The 
state space % is homeomorphic to a sphere of radius S. The area 2-form w, of 
the sphere defines a symplectic structure in it, and promotes % to a phase space. 
The Poisson bracket {f, g}8 of two functions on the sphere is defined by 

dfA dg =If ,  g h .  (2.1) 

In canonical coordinates ( p ,  q )  such that p = S, and S, + S, =- elq, the 2-form 
reads ws = dq A dp, and {f, g}* = a,fJ,g - J,,fJqg. The coordinates ( p ,  q )  do not form a 
chart covering the whole sphere. In many respects it is better to work with the 
coordinates S,, which are true functions on Y', and a constraint. From (2.1) it follows 
directly, or via the coordinates (p, 4). that: 
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where f and g are arbitrary differentiable functions of s. Given a Hamilton function 
H ( $ ,  the dynamical equations read 

f = U  HI, (2.4) 

J=  {s, H ) ,  = -SA ?,H. 

and in particular 

(2.5) 

Observables belong to the real subset of the vector space of continuous complex 
functions of the sphere. It is a Hilbert-space for the scalar product (f, g) = j  wJ*g,  an 
algebra s4 for the ordinary product, and a Lie algebra 2 for the Poisson bracket. 
Obviously, the structures of g, .d and 2 are independent of the length S of the spin. 
It is algebraically convenient to work with universal objects by introducing normalized 
state vectors 

(2.6) 
s 

ii =- E unit sphere 9' 
S 

and by rescaling w, in order to have 

{ni, nj1= €rjhnk. (2.7) 

New and old brackets are related by { , I  = S{ ,)3. Observahles are now functions f(S, C) 
on Y', depending on a constant parameter S which can be absorbed in coupling 
constants in H. It is convenient to define the scalar product of .d as 

for which the functions N,,(C)=& Y,,(B, p) are normalized to unity. The infinite 
set {NI, ,  -/s m s I,  / E  Z+] is an orthonormal basis of .d with properties 

(NI,, NVd) = ~ I , . L ~  (2.9) 

NF, = (-1)"NI-, (2.10) 

where R ( u )  E SO, represents U E SU2 in R3, and D"' a standard D-matrix [15]. The 
Cartesian components of the spin vector are in this basis 

1 s, = sn, = s- N I , ( < )  J3 
s , + ~ s ~ = s ( ~ , + ~ ~ , ) = - s ~ N , , ( c ) .  (2.12) 

With the help of the Clebsch-Gordan coefficients, the product law of the basis elements 
of .d reads 

(2.13) I I' I_ N,,( C) NI,,,( n')  = 1 p,i( ll'l") C , ,,,,,NI*,,,( C) 
I.."' 

where 

(2.14) 



1518 

and the Lie product (normed as in (2.7)): 
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1 I . I . .  {NI,, Nr,.)= U~,( l / ' I")C~, , , , ,N," , , ,  
I_,"" 

where 

(2.15) 

x J ( I +  I , +  I"+ 1)(1+ r -  / " ) ( I -  1'+ I,,)(/'- I +  I"+ 1) Cb-';;. (2.16) 

The action of the isotropy group SO, of 9'' mentioned in (2.11) splits the vector space 
.d into invariant subspaces dl of dimension 21 + 1, span by the functions NI,,,, -1s m s 1. 
.d is the direct sum 

m 

.d=$dl. 
I = O  

(2.17) 

Its linear and algebraic structures are independent of the value S of the spin, in 
contradistinction to the quantum case. 

3. Structure of quantum spin dynamics 

Quantum spin states are usually described by vectors of a Hilbert space Zs of finite 
dimension 2s + 1 E Z+. The basic spin operators S = fig have the properties 

Observables belong to the Hermitian subspace of the vector space of polynomials in 
sk. This is a Hilbert space for the scalar product 

( F , G ) = -  TrF+G 
2 s + l  (3.3) 

an algebra a, of dimension (2s+ 1)' for the product of operators, and a Lie-algebra 
LfS for the commutator Lie product. Independently of the form of the Hamiltonian 
H ( S ) ,  the solution of the dynamical equations 

1 
F = : [ F , H ]  

1 
(3.4) 

belong to  a, for any initial condition F"E a,. The orbits sk(t), for example, belong to 
non-isomorphic spaces a, for different values of s, in opposition to the classical case. 

An onhonormai basis of Z, is Formed siariing From eigenvectors is, w )  of S2 aiid ~3 
by defining the set 

K,,  =w'ZTI (-l)"- 'C~,~wLls,  +')(S. pi. (3.5) 
*@'=-s 
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The operators K, ,  are the counterpart of the functions NI,,,. They have properties 
similar to (2.9)-(2.11): 

1 
2 s f l  (KI.,., Kim)=- Tr KF,.K,, = 6,,,6,,. (3.6) 

where U(u) represents U E SU2 in spin-space span by {Is, p)}. The irreducible basis sets 
{K, , ,  - / S  m S I )  are polynomials of degree I in spin operators s,,. In particular, for 
/ = 0  and 1 :  

The multiplication table of a, to be compared with (2.13) is 

K,,&,,,.= 1 p ( / l ' / " s ) C f , ~ ~ L ~ ~ K , , ~ ~  (3.10) 
I""' 

where p is essentially a Racah 6j-coefficient [ 161: 

(3.11) 

For future comparison purposes with (2.15), the Lie-algebra composition law of basis 
elements is conveniently written as 

with 

u(/l'/"s)=-i-[~ -(-l)""+"jp(// ' / "s). (3.13) 

The analogous tables (3.10)-(3.12) and (2.13)-(2.15) differ on three essential points: 
(3.10) is finite, the coefficients p are non-vanishing for odd values of I + / ' + / "  (non- 
commutativity), and (3.12) is a consequence of (3.10). 

The law (3.8) is similar to (2.1 1). It defines a splitting of a, into invariant subspaces 
as,l: 

2s  

a, = 8 a,, dim a , ,  = 2/+  1.  (3.14) 
I = ,  

For / = 1 ,  in Hermitian components, (3.8) reads 

U ( U ~  U ( u ) +  = 1 siR,*(u) R (  U )  E SO,, U E SU,. (3.15) 

It makes sense to speak of a spin rotation group SU2, common to d and a,, which 
decomposes these algebras into isomorphic subspaces d, - a, , ,  1 S 2s. 

I 
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4. General semi-classical descriptions of quantum spin 

A semi-classical description of a quantum system is defined by a faithful representation 
of the operator algebra of observahles in an algebra of functions on the phase-space 
of the classical corresponding system. We illustrate a general method of construction 
by taking up the spin case. 

Consider the trivial bundle 5= ( a s ,  Y2) whose base is the phase-space Y2 and 
fibre the operator algebra a,. A complete section of 5 is an operator field oll: sP2 3 <+ 
% ( < ) e a , ,  continuous, and such that 

Tr A%(<)  =0, V<E Y 2 3 A  = O  (4.1) 

for all A E  a,. Then, the set d, of continuous functions on Y2 defined by 

a ( < )  = Tr A%( <) A E a ,  (4.2) 

is a vector subspace of the classical algebra d. Condition (4.1) ensures that the map 

@: a, -, SQ, (4.3) 

defined by (4.2) is a linear isomorphism. The inverse isomorphism is given by 

(4.4) 

where '% is the reciprocal section of W It solves the equation 

1 
2 s + l  

Tr Q(<) '%(<') =- O(<' ,  6) (4.5) 

the kernei 8 representing the projector of d onto 4: 

(4.6) 

The scalar and operator products of a, are transported into d- in a natural way by 
deciding that @ is also an isomorphism between normed algebras. The scalar product 
of the images a and b of A, respectively B, via (4.2) is given by 

T r A + B = y  d2n d2n'T(<', <)a*(Z')b(G),  (n ,b)=(A,B)=-  ' I  1 

2 s + l  (457) 

The kernel T is obtained using (4.4) and (4.5): 
T ( n ; , n ) = ( i s + i ) i r ' ^  (d-- ,-, 

"U n j '"u(n) .  

Similarly, the product a 0 b of a and b reads 

(4.7) 

(4.8) 

( a  0 b)(r i )  =Tr AB%(<) = ( 2 ~ ~ 1 ) 2 ~ d 2 n ' d 2 n " X ( r i , r i ' , < " ) a ( < ' ) b ( ~ )  - (4.9) 

... C"-" 
W L l r l G  

N(Z,  <', i") = Tr %(ti) '%(<') '%(<"). (4.10) 

The definitions (4.7) and (4.9) manifestly depend on the choice of %. To avoid confusion 
we shall sometimes add a subscript to the symbols (,) and 0 .  



Description of quanfum spin 1521 

The set of all sections % which satisfy the minimal condition (4.1) is unnecessarily 
large. It is usually expected that the semi-classical image a(:) of an observable A 
looks like the corresponding classical one. In other words, the similarity of the 
multiplication laws (2.13) and (3.10) may be exploited by defining a semi-classical 
image kl,(6) of Kl,  proportional to NI,(:):  

@: K,m ++ ki,(n')=xiNi,(d). (4.11) 

This result, with X I  independer?! of m, 1. rea!ized by a!! section. 9/ which are 'covariant' 
under SU2; namely: 

U(u)%(<) U(U)+ = %(i?(u)-'<) UESU2.  (4.12) 

Invariant subspaces a,, (see (3.14)) of a, are mapped onto invariant subspaces dl 
(see (2.17)) of d, and SP8 becomes an  invariant subspace of SP: 

@: as.l -+ dl 
2 s  

a, -+ S P ~  = 8 dl. (4.13) 

Besides the rotational invariance, one naturally requires that '3 maps hermitian 
operators into real functions, in other words that 

%(a)+= %(a). (4.14) 

I = ,  

Then, for arbitrary operators, 

Tr %(<)A+ = (Tr %(:)A)*  = a(<)* 

and, with the property of the trace under cyclic permutations, 

(4.15) 

(aab)*= b*aa*. (4.16) 

Complete fields satisfying (4.12) and (4.14) admit the expansion 

(4.17) 

where ail xI are arbitrary reai, non-vanishing coefficients, and 
I 

I I i ( G ) =  1 NT,(C)Ki, I = O , .  . , ,2s .  (4.18) 

The fields II,(<) satisfy (4.12)-(4.14) by virtue of (2.10)-(2.11) and (3.7)-(3.8), and 
constitute a redundant continuous basis of a,. Taking (2.9) and (3.6) into account, 
one easily finds that 

Trnl(<)II,.(<')=Sl,.(2s+1)(21+1)Pl(d.n") (4.19) 

".=-I 

Tr Kl,IIl(ri) = (2s+l)N1,(fi)  (4.20) 

1 d2n N,,(:)IIl(<) = KIM. 
A -  -,,, , 

The kernel of the projector onto the subspace Sa, defined in (4.13) is 
2.' I 

I = 0  ,=-I I 
O(<,ri,)= 1 NT,(<)Nl,(d')-~(21+l)Pl(a.:') 

(4.21) 

(4.22) 
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For this kernel, the reciprocal field '%(a) solving (4.5) is easily found using (4.19): 

J-P Amiet and M B Cibils 

(4.23) 

The image a(: )  of an operator A bears various names, such as Wigner function, 
Husimi function, depending on the choice of Q. Many authors speak of the symbol 
a(:) of A. We shall adopt this generic name, and use the denomination X-symbol 
when necessary to specify that a(:) refers to a given field X .  The product aab  (see 
(4.9)) is usually called 'Moyal product' [6] when the phase-space is R2". We shall keep 
this name and distinguish different products by an index referring to the X-field: a; b. 

From (4.17) and (4.20) one computes the symbols of the basis operators of a,: 
k,,(n') = Tr %(ti)&, = xlNl,( a). 

The !owes! ones arc ic a rea! basis (see (3.9)): 
(4.24) 

TI %(n')ls= xoNoo(n') = xo (4.25) 

s ( s+ l )  
3 

Tr%(n')s,=x, J- ~ N,,(ii) = x , m n ,  

Tr % ( n ' ) ( s ,  + is,) = -xI ~ , , ( n ' )  = x , m ( n , + i n , )  

(4.26) 

(4.27) 

S ( i i )  =Tr % ( n ' ) G = x , m i i .  (4.28) 

Equation (4.25) suggests to put xo= 1; the symbol of the identity 1. becomes the 
constant function 1. Agood coefficient x, is closed to 1 and depends on s in  order to 
have S( n') - sn' for large spin. To decide of higher moments xI, one invokes general 
propertics of % which may rcvea! convenient; as disr~sscd ir? !he "ex! scdim,  !here 
exists no ideal choice which offers all facilities. But for the time being it is possible to 
decide oT the sign of the xI's on the basis of a simple argument. Following the general 
convention which associates a spin u p  (down) state Is, s) (Is, -s)) to the spin up (down) 
direction n'= P =  (O,O, 1 )  (-e?), it is logical to expect that the sign of the symbols k d * Z )  
be the same as that of the eigenvalues (s, *slK,,ls, is). From (3.5) and (4.24) one has 

(4.28) (s, +siKJs, *s)=(*i)!- ,GG~;:,b 
k l o ( * E ) = ( * l ) ' m x ,  (4.30) 

where C:?3!, is a Clebsch-Gordan coefficient positive for all 1. The signs coincide for 
positive x,. We adopt this choice in the remaining part of this paper and shall reserve 
the letter X for the corresponding fields: 

. - l F  I 

x , = l , x ~ > o , 1 s 1 s 2 s .  (4.31) 1 2' 
X(n')=- x,IIr(fi) 

2s+  1 I=" 

By integrating X one gets the identity I d2nX(n ' )= 1.. 
47r 

(4.32) 

Hence, the integral of the Moyal product a; b (see (4.9)) coincides with the scalar 
product (4.7): 

(a, b)x=- d2n(a*;b)(n'). 
47r 'I (4.33) 
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5. Selection of convenient semi-classical descriptions 

The famous Wigner correspondence in flat phase-space is characterized by four proper- 
ties: (i) invariance under the transitivity group of the space, (ii) locality of the scalar 
product, (iii) self-reciprocity of the field a( q, p), (iv) expression of the Moyal product 
via differential operators [17]. The Husimi correspondence [2] has property (iv) and 
property (i) with restricted invariance only [17]. But Q ( q , p )  is a field of projectors 
onto coherent states and the symbols of state operators are positive analytical functions. 

In the present spin case, invariance property (i) is realized for the X-fields (4.31). 
In order to have the locality (ii), the kernel (4.8) which reads here 

2s 

I=, 
~ ( i ' , i i ) = ( 2 s + l )  Tr 'X(i i ' )+ ' X ( i i )  = I: ~ ; ~ ( 2 1 + 1 ) P ~ ( r i ' . i i )  (5.1) 

must be equal to the kernel projector (4.22) 

25 

I=, 
qi', i i )= 1 (21+1)~,(n".n').  (5.2) 

The only possibilitycompatible with (4.31) is xI = 1 Vl. Denoting by R ( 5 )  the associated 
field, 

one immediately sees from (4.23) that R is also self-reciprocal: 

' R  = R. (5.4) 

The analogy with Wigner's field ends here. 
A field (4.31) is a projector field if 

X(ri)2= x(a) li E P. 

X ( f i )  = Iii)(ril 

This is achieved by setting 

( 5 . 5 )  

(5.6) 

where (Iii)lri~Y'} is a continuous set of unit vectors. Supposing its existence, (4.17) 
and (4.19) yield 

TrX(ii)n,(ri) =(21+ l ) x l = ( ~ l l l l ( ~ ) l ~ ) .  (5.7) 

The right-hand side is an invariant since xl is constant. Conversely, xl is fixed by giving 
one particular state vector. According to the discussion at the end of section 4, it is 
natural to identify the spin-up state Is, s) with the state It?), t? pointing upwards: 

I t ? ) = l s , s ) .  (5.8) 

This choice has the advantage that Is, s) is coherent and minimizes the uncertainties 
As,,As,. Perelomov [4] chooses the other possibility It?) =Is, -s). The introduction of 
(5.8) into (5.7) leads to 

(5.9) 
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Denoting by Q the coherent projector field X and introducing the explicit value of 
the Clebsh-Gordan coefficient one gets finally 
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(5.10) 

where 

(5.11) 

The field Q( n') is well defined for any n' E Y2 but the coherent states In') are up to an 
arbitrary phase. Taking advantage of (4.12), one obtains an admissible field In') by 
applying to le?) the unitary representation of a rotation which transports P onto n', With 

(5.12) n' = (sin 6 cos Q. sin 6 sin Q, cos 6)  

the simplest rotation is (6, 6), with axis 6 laying perpendicular to P: 

6 =(-sin Q, cos q, 0). (5.13) 

Hence, 

(5.14) 

The right-hand side equality is trivially obtained knowing that the exponential is a 
standard matrix D ' 2 J ( - ~ ,  -8 ,  Q) [15]. The field 1:) is singular at - P  because (r, 6) 
maps P onto - P  for any 6. This is a consequence of the topology of Y 2  which prevents 
the existence of singularity free tangent fields on it. An additional phase factor can at 
most move the singularity or create new ones. For instance, the coherent state field 
used by Varilly and Gracia-Bondia [ 5 ]  is Cis' times our In') and it is singular at both 
poles. 

To complete the Q-description, one easily computes the reciprocal field of Q that 
will be denoted by P: 

1 2s 
P(n') = ' Q ( n ' )  =- E Y b ,  rn l (n ' ) .  2s + 1 ,=o 

(5.15) 

The symbols of the spin operator 5 are, according to (4.28) and the values x, = 1 for 
R, x I  = y(s,  1) for Q and x I  = l/~(s, 1) for P: 

S q ( n ' ) = s Z  SJi) = (s+ 1): : , ( n ' ) = v q F i J r i .  (5.16) 

The major advantage of R(n') is the self-reciprocity and the local scalar product. On 
the other hand, Q misses these properties but has a precious one from the algebraic 
point of view. The Moyal Q-product of the symbol Se(<) of 5 with any function admit 
a differential form of degree 1. Indeed, we show in section I that 

(iq ; a)(n')=Tr;AQ(n')= s:+- n ' h a , - $ i h  ( < h a . )  a(6)  (5.17) 

and, moreover, that only P and the time reversed Q', PT obtained with I P ' ) =  IS, -S) 

have a similar property. 

[ i i  1 
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6. Relations between the descriptions based on the fields R, Q and P 

The semi-classical descriptions of spin defined by R, Q or P have complementary 
properties. The R-symbols may be compared to Wigner functions, and the Q-symbols 
to Husimi's coherent ones. It is often advantageous to commute from one description 
to another one. This gives an overview of the necessary interconnections. The moments 
xl of the field 

1 
X ( i )  = __ 1 xlIIr( i )  

2 s + l  I 

will be called rl, ql, pl respectively, when X = R, Q or P. Then, from (5.3), (5.10) and 
(5.15): 

rl = 1 91 = Y ( S ,  1 )  PI = Y(S, I ) - ' .  (6.2) 

The symbol of A E a, 
ax(  i )  = TI X (  i ) A  (6.3) 

bears a subscript x, which runs over the set r, q, p accordingly. The inverse relation 

2 s + l  
A = ~ 

4.77 
d2n ur( 5 )  'X( i )  

is an expansion of A in terms of an X-field again, since 

' R = R  'Q=P ' P = Q .  

One notices that the P-symbol a, appears in the Q expansion and reciprocally, whereas 
a, stays in the R expansion itself. 

All relations between descriptions may be expressed in terms of traces of products 
of fields, 

1 21 

2 s + l  I=, 
W,(x, x', 6, 6') =Tr X(ri)X'(i ' )  = - 2 x1~;(2l+l)P1(n'.Z') (6.6) 

in direct consequence of (4.19) and (6.1). For triplets one introduces the set of invariant 
functions 

,yI,.l"( 6, i', ti,,) 

= Tr IIl(i)IIr(i')IIl.(fi") 

-pp(~l'l"s)(2s+i) 1 ~ ~ ~ , ~ ~ " ( - i ) ~ " ~ ~ ~ ( i ) ~ ~ ~ . ( i ' ) ~ , " ~ " ( ~ ' ' )  (6.7) 
""" 

where p is defined in (3.1 I). The properties of the trace and II: = II, imply immediately: 

(6.8) ,ynr(i, i', rif,)=,yl,"l,(i, ti,,, r i ' ) *= ,y r r1 ( i ' ,  a", i ) .  

From (6.1) and (6.7) it follows 

W,(x,x',x", i, i ' , r i f , ) = T r X ( i ) X ' ( i ' ) X " ( r i " )  
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The functions W, relate the various symbols and fields: 
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a,( i )=-  d2n' W2(x, r ~ ' ,  ii, ii')a,.(ii') (6.10) 

X ( i i ) = -  j d'n' W,(x, r ~ ' ,  i?, i i ')X'(i i ')  

47r 

(6.11) 4.77 

where 'x' in W, indicates to substitute 'xj = ]/xi for xi in (6.6). These functions appear 
in the scalar product (4.7): 

d2n d2n' W,(rx, 'x, ii', Z)a:(ii')b,(ii"). (6.12) 

The functions W, give the kernel of the Moyal product (4.9): 

2 s + l  
(a, ; b,)( i i )  = ( n)2 d2n' d2n" .VI( 6, ii', 3 ) a , (  ti')b,( 3') (6.13) 

with 

The unpalatable functions x and W, are difficult to deal with in formal calculations, 
but are easily programmable with a symbolic calculation software because Clebsch- 
Gordan and Racah coefficients are square roots of rational numbers that may remain 
unevaluated. Two particular functions are very transparent, namely W,(q, q, 2, G ' )  and 
W,(q, q, q, ii, ii', 3'). They belong to the generic set 

(6.15) 

The factors (ii ' l i i) are simple functions of ii, 3 and of Z, the north pole of Y2.  Making 
use of (5.14) and summing up a binomial expansion, one easily sees that 

qk(n' , ,  . . . , &) =Tr Q(n'!). . . Q(i ik )  =(<,I G2)(C21 ii,). . . ( G k ]  Cl). 

(6.16) 

The functions qk and their factors can be expressed in terms of the basic invariant 
function 

(6.17) g(ti, , ri,, ii,) = $(I + ti,. ri,+ ii, . ii3+ ii, . ti, +in',. ti2 n ti3) 

and of its contraction 

go(ti,'ri2)-g(iil, ii2, ii,)=f(l+ii,'ii,). (6.18) 

The amplitude of g is given by the product 

lg(iil,:2, &)l2=&!0(ii,, i i 2 ) g 0 ( i i 2 . i i 3 ) g ~ ( i i 3 ' t i , )  (6.19) 

whereas its phase is just one half the area A( ti,, n',, G3) of the geodesic triangle on 
with vertices located at tii: 

(6.20) 
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This beautiful property originates from geometrical properties of SU, [4]. Altogether: 

($l,i)=g,(fi'. q s  e t M E A * ' I  (6.21) 

93(ri,, r i2 ,  ri3) =go(<,.  ii2)'g,,(ri2. ri3)'g0(ri3. G I ) '  e'yA('h,'2,'J 

=g( i i , , i i2 , f i , )2 '  (6.22) 

and 

A(:, ,..., fik)=A(.?,ii l ,ri2)+A(.?, i i2 ,r i3)+. . .+A(.?, i ik , i i , ) .  (6.24) 

To be noticed, the origin 2 is present in (6.21) but disappears in the sum (6.24) because 
the polygon is closed and each sub-area is taken with its sign: A( i i , ,  ri2, ii3) > 0 for 
right oriented triangles and <O for left oriented ones. 

In application, we have: 

(6.25) 

and 

W3(9, 9,9, ii, 3, a") = 93(ii, 3, a") 
1 + 6. G'+ 3. a"+ p. < + i s .  n" a" 25 

. (6.26) 
=[ 4 1 
= j 9 , ( < .  $ ) 9 , ( , i t .  g )92 (a" . z )  eisA(fi.R'.A"l 

In addition to these two functions, the only simple ones are the trivial: 

1 
2 s + l  

W2(9,p ,Z ,#)=  W,(p,q,ri,Z')= W2(r , r ,Z ,2 ' )=-@(<, i i ' ) .  (6.27) 

The function W2(p,p, ii, ii') is the inverse kernel of (6.25): 

1 [ d2n" W2(p,p, ii, a") W2(9, 9, a", i i ') =- @(ri, 6'). (6.28) 

With the help of (6.11), it is possible to express all W3 functions as an integral over 
a W, and the W, (6.26), avoiding the sum (6.14). For instance: 

471 2 s + l  

W3(q, P, P, i S', a") 

= ( T)2 1 d2n, d2n2 W3(9,9, 9, 6 6, WAP, P,  6, $7 

x W 2 ( P , P ,  c2, G " ) .  (6.29) 

Using (6.28) and (6.29) together with (6.10) and (6.22). the Q scalar- and Moyal- 
products (6.12)-(6.13) take the more transparent form 

(aq,  b,),=L J d2n a$(n')b,(n') (6.30) 
471 

where the indices p on the right-hand side should be noticed. 



1528 J-P Amiet and M B Cibils 

1. Differential form of the spin operator 

The symbols s k ( r i )  of the Cartesian components s,, of the spin operator induce linear 
maps of ds by 

S h :  g U  s k o g c  d . 7  g E sa,. (7.1) 
We drop the subscript x for a while; the underlying field % is understood to be of 
type (4.17) with xo= 1. 

The linear operators sko  defined by (7.1) fulfil 

[sko,  s p ]  = ieXlmsmO 

1 S h 0 S k  = s(s+ 1) 
k 

and 

( 3 o f ) ( R i i )  = R(S0 f )(a) R E SO, (7.4) 
since '?l is covariant. 

pk" admit a realization by first order differential operators [17], namely: 
In the Wigner correspondence for flat phase-space R'", the basic operators q h o  and 

h J  
q k " =  qk--  - 2i Jpk 

h J  
2i Jqk 

p k O = p k f -  - 

In analogy, we look for a differential operator of first order i(ri) such that 

(;of)(??) = i(ri)f(ri) f E 4 .  (7.7) 

Per definition, the components of i must fulfil (7.2)-(7.3): 

[ I k ( n ) ,  Id31 = i & d m ( 3  (7.8) 

(7.9) i( r i )2  = s(s + 1) 

and the right hand side of (7.7) must transform as a vector under rotations. The most 
general vector operator of degree 1 in derivatives on the sphere is 

(7.10) i(a)= W-ipriA 9 ,  + Y n ' A  ( < A V , ) .  

Introducing the notations 

(7.11) 

ii(ri)=iri A i ( r i )  (7.12) 

1 E(:) =r ri A a, 
I 

and computing the left-hand sides of (7.8)-(7.9) one gets: 

[Ik, I , ]  = i&k,,[2apn,+2PyB,+(P2+ y2)L,1 

i' = a( (Y - 2y)r i2+ ( p 2 -  y 2 p .  

(7.13) 

(7.14) 

Equations (7.8) and (7.9) are satisfied by four sets of values: 
p 2 (a, Y) = (s, -9 (S+l , t )  (-3, f )  (-(S+l),-&). (7.15) 
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Hence, there are four and only four fields leading to a first degree operator i To guess 
what they are one replaces in (7.7) f by 1 and s' by &(a) = x , m  5 (see (4.28)): 

( S , . l ) ( r i ) = x , ~ a = i ( n ' ) l = a a .  (7.16) 

The coefficient x, has the four possible values: 

x, = & J" -& -E. (7.17) 

The first value is the moment q1 = y(s, I )  of Q(ii), the second is p I  = y(s ,  1)-' of P ( 3 .  
The last ones are negative. They belong to the time reversed fields QT, respectively 
P', constructed from the coherent state (ZT) = Is, -s) = TIS, s). To identify higher 
moments x, one could replace f in (7.7) by monomes in nk.  We give in an appendix 
a direct proof that the candidates Q and P are the good ones. That is 

i = s < + ' L - ' B = S  2 2 '14 o (7.18) 
- -  

and 

i' = (s + 1)ri + f i + f B  = <D 0 .  (7.19) 

We purposely used a cross to distinguish the two selected solutions because i' is the 
Hermitian conjugate of 

(1; = (i% g). (7.20) 

for the ordinary scalar product (2.8): 

On the other hand, i is Hermitian for the Q-scalar product 

g), = (1; fg,, (7.21) 

and i' for the P-scalar product 

(i% €!), = (1; i+dp. (7.22) 

These properties are automatic if (7.18) and (7.19) hold, because for any X-field 

( l ; i x ; g ) x = ( & ; l ; g ) x  (7.23) 

by virtue of (4.16) and (4.33). 
The operation 

(<if)( a) = 1 i(a)f(a) = *if(Z) +- a n 7 v. -a  n +a) (7.24) 

is a deformation of the ordinary product. The rescaled commutator gives exactly the 
Poisson bracket 

S 2s c -  
S 

1 
:(ii;f-f; t i ) =  - 2  A a J - - { r i , f , ,  (7.25) 

but a deformation occurs for higher powers of nk.  The deformation (7.24) is the basis 
for the geometrical quantization [ 101 of the classical spin. In opposition to the quantiz- 
ation in flat phase-space W2", which is unique up to a scale factor Ah, the quantization 
in .Y2 has an infinite number of non-equivalent solutions, one for each value 2s E Z,. 
The fact that 2s must be an integer does not appear above, since the operators i and 
i' given in (7.18), respectively (7.19), satisfy (7.13)-(7.14) for any value of s € @ .  The 
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quantization of s follows from the requirement that i should be Hermitian. If 2s E z,, 
..P, is a stable domain of the 1,'s and these operators are Hermitian for the scalar 
product ( ,)4 (see (7 .21) ) .  But if 2 s E Z + ,  repeated actions of ZA's leads outside sis and 
generate the whole space d. This is evident from the formula 

I - P A m i e t  and M B Cibils 

The degree of the monomial grows endlessly because 2s - k - I - m never vanishes if 
2s #integer. The domain of i and also of i', is d and i# i' for the usual scalar 
product of d. This product is given by the invariant measure on 9'' and is unique, In 
conclusion, i can only be Hermitian for 2 s ~ Z + .  

For a given quantum Hamiltonian, the spin behaviour will still depend on the value 
of s because the algebra a, and a,, are non-isomorphic if s # s'. T h e  dimension of a, 
increases with s and the dynamics approaches that of classical spin as we shall see. 
To perform a proper physical classical limit one must reintroduce spin observables 
having the dimension of an action, namely the spin operator 

s = hS. (7.26) 

The Q-symbol reads (dropping the subscript q )  

S( n') = Tr Q( n')S = hsn' = Sn' 

and the corresponding operators in dr 

(7 .27)  

(7 .28)  

ds is now the vector space of polynomials in S, of degree G2s,  and a, the gradient 
with respect to the variables SA. The Moyal product of two spin variables becomes 

(7 .29)  1 ih 
2s 2 sk.s,=s,s,+-(sA,S2-ShS,)+-EX,mSm 

and the rescaled commutator 

1 (7 .30)  

where {,}s is the original Poisson bracket ( 2 . 2 ) .  A classical limit makes sense if the 
volume of the phase-space is kept constant. In R2" the volume is infinite and the limit 
is obtained when fi + 0. Here, the volume is a function of 131. Therefore, the classical 
limit implies: 

h - 0  S + C C  S =  hs constant. (7 .31)  

,(sk'sl-slosk) = E k l m S m ' { S k .  s l } s  

Taking this limit in (7.29) yields 

s, 0 s, + SkS, (7 .32)  

and for arbitrary observables (see section 8 ) :  
( f . g ) (S )  - f ( S ) g ( S )  f i + O  S - P C C  (7 .33)  

(7 .34)  
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8. Algebraic limit for large spins 

From the pure mathematical point of view, the interest of the linear map (4.13) is that 
it generates finite, non-commutative algebras of functions on the sphere Y2. Expressed 
in terms of the basis elements kl,(n')=TrKl,,,%(ii), the multiplication table is a 
universal copy of (3.10): 

k!,. kp,.= 1 p(ll'/''s)C!,,k,;,,k?,,,,,, (8.1) 
I""' 

The Lie-algebra composition law is itself a copy of (3.12): 

The basis sets {k lm,  OS / c 2 s ,  - I <  m S I ]  depend on % and span generally different 
subsets of d. 

We shall focus our attention in this section on the maps defined by X-fields. They 
map a, linearly onto the same vector space d.T (see (4.13)), and the X-dependence 
lays in a single scale factor 

k:, =xlNl, .  (8.3) 

By choosing {NI,,,} as a universal basis of ds, the laws (8.1) and (8.2) become 
X-dependent laws in the same space ds: 

(8.4) NI,,,; N,.,,. = 1 p,(Il'l''s)C:,k.;..N~,- 
I""' 

The integral form of (8.4) is given by the kernel Nx (6.14). 
The set d3 with the product ; is an algebra d:. A meaningful comparison with 

the classical algebra .d for increasing values of s is possible if the factors x, depend 
smoothly on s and remain finite when s+m. Then, the antisymmetric part of the 
product (8.4) vanishes for finite s. 

The classical product (2.13) and the symmetric part of (8.4) have both non-vanishing 
components for even values of I+l'+ I" only. For the Lie-products (2.151, respectively 
(8.15), this number must be odd. Thus, to compare d: and d we define the quotients 

These numbers are trivially obtained using (8.6) from the basic ones: 

(8.9) 
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U S ( S + l ) ( 2 S +  1 )  5=-= 4(-1)~*+’ 
W E ,  ( I , + I , f I , +  l ~ ( l , + l z - 1 3 ) ~ I ,  + 1 , - 1 2 ) ( 1 2 + 1 3 - 1 ,  + 1) 

) - I .  xL s 0 0 0  
I ,  I ,  I ,  I ,  - 1 I ,  I ,  

(8.10) 

Introducing into (8.9)-(8.10) the expressions of the 3-j and 6-j coefficients [I61 and 
the expansion variable 

1 
2S+l  

& =- 

one finds: 
3 

.I=F’(&)[ i=, n Ki.(E)Ki,(--E) 

where 
I 

K ~ ( E ) =  ( I + k & ) .  
k = l  

Q and Jl are even polynomials in E (see end of L 

F‘(0) = $(O) = 1. 

:tion), with the rc 

(8.11) 

(8.12) 

(8.13) 

(8.14) 

efiy 
(8.15) 

Hence, 7 and 5 are square roots of rational functions of E ~ .  Their behaviour for large 
spin, 2s + 1 >> I , ,  is 

5- 1 (2s + 1 ) 2 ’  

constant 
.I-]+ 

(2s+1)2 

Since rI = 1, this means for the Moyal R-product that 

(8.16) 

and 

(8.18) 

In consequence, SP: tends toward the classical algebra and Lie-algebra d when the 
spin s becomes infinite. The quantum correction behaving as (2s + I)-’ is a particularity 
of the self-reciprocal field R. For the coherent Q one has, noticing that q r ( s ) =  
[K I~ -E) /K I ( -E ) I ”~ ,  

.I =av= (P iE l  

9I,4l2 q(- E )  K12i --E M E )  ‘ 
q 

71q is a rational function of E, but for large s 

(8.19) 

constant 
2 s f l  

s >>max(li). . I q - - 1 +  (8.20) 
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The commutator should be rescaled by a factor s instead of Jso as in (8.18). The 
pertinent quotient is -6, which is also a rational function of E :  

(8.21) 

For the Q-product ;, equation (8.17) is unchanged except for a correction 0(1/(2s + I ) ) ,  
and (8.18) reads 

The different scaling factors of the commutators are natural in the sense that for 
I, = I ,  = l, = 1 one has exactly 

Jso 
. (NI,: N , , , -  NI,,: NI,) 
1 

The proof of many statements made above is obtained by direct inspection of the form 
of rp and #, that we give here for completeness. rp is defined for g = + ( I ,  + I2 + I,) integer. 
With the number h=min(g- l , )aO and K ~ ( E )  as  in (8.14) one has 

(8.24) 

@ is defined for g'=f( I ,+I ,+/ ,+l)  integer. With b'=min(g'-I!)al ,  one has 

1 h' (-1)" 
g'!"=l  2E 

# ( E ) = -  1 - [ K  + n - i ( - E ) K g , - n ( E )  - Kg,+n-~(E)Kg,-n(-E)l 

(8.25) 

9. Conclusion 

One interesting aspect of the formalism developed in the preceding sections is that it 
allows a phase-space approach to spin systems in order to consider a classical limit 
in this context. Several applications to physical systems are expected and actually we 
look for further developments which will be probably presented later on. In particular, 
we are specially interested in the spin-boson model (see for instance [ 141 and references 
therein) that we have studied in recent papers [18]. To conclude this work we apply 
the present phase-space formalism to this model and we write down the equation of 
motion of the system using the generalization of the Moyal framework to spin variables 
presented above. 

The spin-boson Hamiltonian is 

H =-+-q2+ClS3+hSlq P2 k 
2m 2 
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where q and p are usual position and momentum operators; S ,  the spin operators; m, 
k, R and A are positive constants. Hamiltonian (9.1) describes an harmonic oscillator 
which interacts with a spin s=  hS through the coupling term AS,q. Letting W, the 
density matrix describing the state of the system at time 1;  the evolution law is [17] 

J-P Amiet and M B Cibils 

1 
W ' - ih  - - ( h o w , - w , a h )  (9.2) 

where w, and h are, respectively, the symbols of the operators W, and H.  The phase 
space of the system being the tensor product W20Y2, we take these symbols and the 
Moyal product 0 in (9.2) just defined from the product of the usual Wigner correspon- 
dence (for the oscillator part) and the Q-correspondence (5.10) (for the spin part). 
The differential realizations (7.5)-(7.6) and (7.18) for both Moyal products allows us 
to compute (9.2) easily. One gets: 

(9.3) 

The variables q, p and S,, symbols of q, p and Sk, are unaffected by the classical limit 
h +O. At this limit the last term in (9.3) vanishes and the equation of motion becomes 
exactly the classical one w, = {h ,  w,}. 
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Appendix 

We give here the proof of the expressions (7.18) and (7.19). 
From (6.31), the Moyal product involving Q-symbols of spin operators is 

2 s + l  
(<q ; a , ) (< )  = ( T ) ~ (  s + 1) I d'n' d'n" q,( ri, 9, ri")ri'a,(d'') (A1 ) 

where we have explicitly written <p( ri') = (s + 1):' (see (5.16)). Using the first expression 
(6.26) for q3(ri, ti', n'"), the integral over ri' in the right-hand side of ( A l )  can b e  
computed by a straightforward calculation. One gets 

I d2n' q3(ri, ri', ti")ri '  

On the other hand, by applying the differential operator f(<) given in (7.18) on the 
function q2(ri, ri") (see (6.25)). it is easy to see that the right-hand side of (A2) equals 

4T i(ri)q2(ri, 5"). 
( s +  1)(2s+ 1) 
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Then, inserting this result in ( A l )  one finds 

(& ;a , ) (  r i )  =- 2s+1  I d2n"a,(ii")f(ri)q,(ri, 8"). 
41r 

With the help of (6.101, one recognizes here the Q-symbol of the operator A and one 
obtains the relation 

( & ; a , ) ( i )  = i(ri)a,(ri) 

which proves (7.18). 

side of (A3) one has f(i i)q2(ri ,  ii") =[ f ( i i" )q , ( r i ,  ri")]*. Then, property (7.20) yields 
Now the proof of (7.19) is simple. It is enough to remark that in the right-hand 

(& ; a,)( 5 )  = ~ 2 s + 1  d 2 n " [ ~ ( r i " ) + a ~ ( r i " ) ] q ~ ( r i ,  ri") 
41r 

and since, from (6.10), we have 

a,)($ = ~ d'n' W,(p, p, ri, ri')(?,;o,)(ri') 

one obtains (7.19) by inserting (A4) in (A5) and using (6.28) an 

2s+1 41r I (A5) 

(4.6). 
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